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SUMMARY

The mean strain rate in turbulent shesr flow must tend to make the
structure anisotropic in all parts of the spectrum. It 1s argued here,
however, that, if the spectral energy transfer process destroys orienta-
tion, the Kolmogoroff notion of local isotropy can still be justified
in spectral regions where the local transfer time is shorter than the
characteristic time of the gross shear strain.

INTRODUCTION

Recent measurements on the anisotropy produced by homogeneous strain
of the (approximately) isotropic turbulence downstream of a grid (refs. 1
and 2) suggest reexamination of Kolmogoroff's postulate of local isotropy
in shear flow (ref. 3). This postulate has been confirmed experimentally
in the sense that isotropic-type behavior has been measured for the small
"eddies" (refs. 4, 5, 6, and T). Up to the present time there seems to
be no contradictory evidence.

Nevertheless, as pointed out by Uberol in reference 2, the ubiquitous
strain rate of turbulent shear flow must act upon eddies of all sizes,
tending to make the turbulence anisotropic at all wave numbers. The
lergest eddies must be nonisotroplc in any case since their dimensions
are comparable with the width of the mean shear zone.

Kolmogoroff's ides spparently was that, in the nonlinear transfer
of energy from small to large wave numbers, the necessary direction
preference of the large structure gets lost. This seems qulte plausible,
but at least three other effects are involved: (1) The strain-induced
tendency to anisotropy et &ll wave numbers, (2) the general tendency
toward isotropy (equipartition?) evident in the absence of straln rate
(see refs. 1 and 2) (this must also occur at all wave numbers), and
(3) the viscous dissipation to internal energy, especlslly at very large
wave numbers.
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It is questloned whether the characteristic times for (a) inertial
transfer to higher wave number T, (b) component transfer at the same

wave number Ty, and (c) viscous dissipation at each. step of the spectral

energy cascade T, are sufficiently short to forestall the mean strain-

induced anisotropy. In inertial spectrsl domains if elther T, OF Ty

is short enough, local isotropy remsins a plausible notion; in the domi-

nantly viscous domsin, T, is the critical time. The appropriate charac-

teristic time for comparison is, of course, the inverse of the mean straln

e\ -1

rate, or % ol in boundary-layer-type flows with principal mean
v/

velocity field T(x,y).

This work was carried out at the Johns Hopklins University under the
sponsorship and with the financlal assistance of the National Advisory
Committee for Aeronautics. The asuthor would like to thank Mr. H. M.
Fitzpatrick and Dr. C. C. ILin for their helpful comments.

SYMBOLS \
D sny characteristic length » _ _ o
E(k) "three-dimensional” energy spectrum
k magnitude of wave-number vector
k Kolmogoroff wave number (inverse of Kolmogoroff microscale)

characterizing viscous part of spectrum

kq component wave number corresponding to Kolmogoroff wave-number
1 magnitude _
q megnitude of turbulent velocity, (uz + V2 + we

q' =VEE+;E+\T§

R Reynolds number
. 1
Ry turbulence Reynolds number, fé E;ﬁ
3
Uy velocity vector
U mean veloclty in x-direction

u,v,w turbulent velocity components in x-, y-, and z-directions
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v any characteristic mean velocity component

X,¥,2 Cartesian coordinate axes

r Heisenberg spectral counstant

A dissipation scale (Taylor microscale)

v kinemstic viscosity

T (k) spectral inertial transfer time

Tb(k) spectral time for aéproach to isotropy in absence of gross
strain rate

Tc(k) viscous decay time

¢ rate of dissipation of turbulent kinetic energy per unit mass

Subscripts:

i,k vector directions

CHARACTERISTIC SPECTRAL TIMES

For a rough estimate of characteristic spectral times a dilscrete
energy cascade in the manner of Onsager (ref. 8) is visualized. The
assumption of similsrity in successive steps requires a geometric pro-
gression; that is, at each step Ak =~ k. Assume next that at each spec-
tral jump in the cascade process all statistical orientation is lost;
that is, the energy arrives at wave number k in isotropic condition,
no matter how anisotropic it had become in the previous stage. Possibly
by direct dimensional reasoning, Onsager defines the characteristic
(inertisl) trensfer time per stage as

Ta(k) = 1 {1)
Vk3E(k)

where k is wave-number megnitude and E(k) is a three-dimensional
energy spectrum

%(E+§+F)=%?=Lwﬂ(k)ak (2)
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Here w, v, and w are orthogonal velocity fluctuation components.

Physically this form can be deduced from

T, = Kinetic energy per stage (3)

Energy transfer rate

From equetion (2) (and Ak ~ k) the numerator is obviously kE(k). By
analogy with the form of the product expressing the rate of transfer of

U

energy from mean shear flow to turbulence, Uy -3 in the general
X
k

turbulent energy equetion (see ref. 9), the denominator is expressed as

(Spectral velocity)” _ (kE)5/2 = «k5E3
Spectral length 1/k

Hence, following equetion (1),

(k) = P = w2 - -

.. = =

ViPE>  (i0E

Within each step of the cascade, the characteristic time T, for

adjustment of an induced energy inequality among the three components

is also an inertiasl phenomenon expressible in terms of pressure-veloclty
correlations, hence for went of more detalled understanding it is
assumed that

T-b ~ Ta (ll-)

The viscous decay time 'Tc(k) of the energy at any stage is
physically

_ Kinetlc energy per stage (5)
C ” Viscous dissipation rate '

The denominator here, by analogy to the form of the dissipation rate in

, dUsfouy BUJ)’ ‘s
axd\?xj oxy

general

Y (Spectral velocity)Z -y KB

: 2
{Specral length)2 (1/x)

= VIOE

(v
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wvhere v is the kinemastic viscosity. Hence

kE
k) =
TC( ) kaE
that is,
T (k) = X (6
) = =5 )

Before returning to the question of local isotropy, it is instruc-
tive to write out the two inequalities which 1dentify the lnertial and
the viscous regions of the spectrum. The former region is temporally
characterized by the fact that the energy in any stege jumps to the next
before there has been time for appreciable viscous dissipation:

Ta(k) << T,(k) (7

The latter region consists of the cascade stages in which the energy is
dissipated before there is tlme for inertial transfer:

1o (k) >> 1,(k) (8)

Substituting equations (1) and (6) into these,

Inertial region: %—‘J—E(l]:) > 1

Viscous region: %réé?l < 1

This serves as a check on the T definitions since '%vi%Fl is simply
the spectral Reynolds number.

(9)

INERTTAL, REGION

With the assumed model a necessary condition for local i1sotropy in
the purely inertial spectral range 1s that T, be much smaller then the
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=y =1
characteristic mean strain time, most simply (5 5;) . In boundery-
layer type shear flows (this includes free flows in which Prandtl's

boundary-laeyer approximation is valid) %_gﬂ is a good approximation

Y
to the principal mean strain rate where U(x,y) is the mean component
of mean velocity and y 1s the Cartesian coordinate with its highest
gradient. Thus, inertial local isotropy can be expected at wave numbers
for which

1 <1 (10)
Vide(x) 198
In the inertial region a spectral behavior roughly like

can be expected since this is a formal result when local isotropy is
presupposed (see refs. 3 and 8). Here ¢ is the rate of dissipation
of turbulent kinetic energy per unit mass. With this spectral form,
Ta(k) decreases monotonically:

v (k) = g7L/3 B3 (22)

If this expression were valid out to indefinitely large wave numbers,
inertial local isctropy could be found far enough out the spectrum no
matter how high the gross strain rate. There would always be a range
of k for which

7o (k) << l-lT'irl (13)
2 ¥y

Of course, equation (12) cannot apply to indefinitely large wave
numbers, so Ty(k) will actually increase (eq. (28) or (30)). In any
case, the inviscid form, equation (12), converts equation (13) to

$2/3 55 % ¢"l/3 9 (14)

30
3
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In a real fluid, the inertlial range cen exist only at wave numbers
much smaller than the inverse of the Kolmogoroff microscale, that is,

k << (%)l/lL (15)

so that equations {(14) and’ (15) make a pair of necessary conditions for
inertial local isotropy. They can now be comblned into a very crude
Reynolds number criterion.

Introduce the following symbol conventions: (a) If or.2/ RSN Bz/ 5
then o >>> B; (b) if a>> 8 and Pp>> y then « >>>> y. For example,
suppose that «>> B implies o = O(20B): then € >>>> & implies

€ = o[(zo)ea:[.
With this representation, equation (14) can be written as

Gl
K >>> "o (16)
which can now be combined with equation (15) as
1/2
30 3
(1%)1/4 SSSS> (%;Z- (17)

For a turbulent shesr flow in which the total production rate for tur-
bulent energy from mean flow energy is of the same order as the total
dissipation rate (they are exsctly equal in pipe flow),

g = o(ﬁv %) (18)
But, empirically,
W~ 0<ll—o ?) (19)

according to measurements in a variety of shear flows, so

3 _ [
e 0(3?) (20)
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Furthermore, approximsate ¢ by its isotropic form

2
g ~5vE (21)
P\
where A 1s the Teylor microscale Equations (20) and (21) convert
equation (17)

127\5 /2 >SS>> 16 (22)

In turbulent shear flows it seems reasonable to define the turbulence
Reynolds number RK as

_1 g2
37\='Egv— (23)

where

P iy
e
N
M)
1]
%l
]
%ol
+
Tl
+
Bt

VISCOUS REGION

In the predominently viscous reglon of the spectrum,

k»(%)”“ (oh)

and the temporal inequality for possible isotropy is

k) = _l_ <L _.]:_._
2 o
or
2> 1 A (26)
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Since Tc(k) decreases monotonically with k, it is clear that
there will always be some wave number sbove which thls necessary inequal-~

ity will be satisfied.

It should be noted that in this spectral range the simple dlmen-
sional spectral transfer theory of Heisenberg in reference 10 gives

E(k) « k™7 (27)

a result which has had rough experimental confirmation. This leads to
an increasing inertial time

To (k) = = (28)

Although T, 1is of negligible dynamic significance in the viscous region,
this suggests a detailed look at the mixed region, where

‘o <:¢3>1/4

Here both T
tion (13).

a 8and T, Iare important and conceivably may violate equa-

MIXED REGION

In the spectral region with both inertiasl transfer and viscous dis-
sipation, Ta(k) can be estimated from equation (1) by inserting for

BE(k) the function obtained by solving Heisenberg's equation (see ref. 10)

-k/3
_ (88, , &2 -5/3
E(k) = <9y> 1+ % K k (29)

Here Tc(k), as given by equation (6), is independent of E(k).

The value of Heisenberg's constent ¥ in equation (29) has been
variously estimated from experiment in the range 0.2 to 0.85, with 0.45
an acceptable compromlse velue. For simplicity, take vy = h/9. Assuming
the Kolmogoroff wave number is written as

¢\1/1F

. = (5)
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equation (29) turns equation (1) into

215 \-2l3
Tk 1/34-1/2 1/2| e\t [k
—) s 2 v 1+ —_— — 0
W) - g 20
For values of Xk/k, sufficlently small that the second term in the

brackets is negligible, this reduces to the inertial estimate, equa-
tion (12). :

The viscous decay time in terms of k/k, is
)\ _ 1/2 1/2/\-2
o) £

Figure 1 is a dimensionless plot of Ty and T,. The values of
T, and T, &re necessarily of the same order in the vicinity of k=~ kc,
since this is the region of equal inertisl and viscous effects, that is,
of Reynolds number asbout unity.

By equating the derivative of equation (30) to zero, the minimum
value of Tg 1s found to be

o 0+ 2(5) G

On the whole, a necessary condition for local isotropy is that

1.8 L/ «< 1 (33)
$) <3 &
or simply
(%)1/2 >> % | (34)

A less certain but more convenient criterion follows from the use
of equations (20) and (21):

Ry >> 15 (35)
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It is worth noting that for k/k, = 2, for example, the inertial
condition Tq << 2 could be violated whlle the viscous condil-

ou/dy
is satisfied. Yet this 1s a spectral range in which

tion Ta <<

30/3y
inertial forces are not negligible, and equation (33) does not rule out
the possibility of an anisotropic local spectral range for k kc‘ of

course, for k>> k,, T, 1is not pertinent and Ty << (Ta)min’ 50 equa-

tion (33) implies isotropy here.
WAVE NUMBER OF TURBULENT ENERGY PRODUCTION

Following Prandtl's simple kinetic-theory type of model in turbulent
shear flow, it is inferred that the production of turbulent energy from
mean flow energy is primarily due to the lateral fluctuating motion of
"f£luid balls” in the presence of a velocity gradient. Therefore the mean
production rate must depend at least upon the lateral root-mean-square
fluctuation v' and the chief mean velocity gradient dU/dy in a
boundary-layer-type flow.

Of course, the turbulent energy equation gives the rate per unit mass

as UuUv %g. Presumsbly thls energy is fed into the turbulence over a wide
range of wave numbers, each receiving an allotment proportional to its
spectral contribution to Tv.

It is noted, however, that v' and Bﬁ/ay are sufficient to repro-
duce the dimensions of wave number k, so an estimate of the order of
magnitude of the energy production wave number kP is

_of1 3
kP_OQ’_, ay) (36)

Clearly local isotropy can be expected only at wave numbers mich
larger than k?:

130
k>> = S (37)
For turbulent shear flows whose gross production rate 1s of the same

order as the dissipation rate, equations (20) and (21) can be introduced
so that
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(38)

For inertial local isotropy, 1/k must alsc be much larger then

the Kolmogoroff microscale; that is,

k << AEL
(ﬁ)
which mey be written together with equation (37) as

é} %g-<< Kk << <§%)l/h

1/h

5 8 e (2

Using equations (20) and (21) this gives & Reynolds number inequality

73/ 5555 25

which 1s much like equation (22).

COMPARTSON WITH EXPERIMENT

The three semiempirical Reynolds number criteria can be summerized

as follows:

(a) Lower bounds on R, for the exlstence of en isotropic inertial

subrange are glven by equation (22) based on inertial transfer time and
Kolmogoroff wave number and by equation (42) based on turbulent produc-

tion wave number and Kolmogoroff wave number.

(b) The lower bound on Ry for local isotropy in inertial or mixed
range is given by equation (35) based on minimum inertial transfer time

assuming a Helsenberg spectrum.

Next these inequalities are compared with the conditions in typical
pest experiments. In the round-jet.experiments which include those of

references 5 and 11 R; =~ 120, hence Rk5/2 =~ 1,300. Since there is no

(39)

(40)

(k1)

(k2)

-
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a priori basls for assigning a specific numerical factor to the strong
inequality o >> B, the experimental results are used. In these Jet meas-
urements the shear correlation spectrum reached zero at a one-dimensional
wave number of about 45 per centimeter, whereas the Kolmogoroff wave num-
ber k. (the inverse of the Kolmogoroff microscale) is 100 per centimeter.

Since k. 1s a three-dimensional wave-number magnitude, comparison
is properly made by defining a corresponding one-dimensional parameter kcl'

A plausible, though arbitrary, definition is the first moment of the one-
dimensional spectrum that corresponds to a Dirac-function three-dimensional

spectrum, that is, a spherical shell of radius k,:

EANGICLS
L@

whence kcl = g k., =~ 38 per centimeter.

(43)

Therefore local isotropy is reached Jjust around the Kolmogoroff
region where the spectral Reynolds number is of order unity. Hence
equation (35) should be just barely satisfied, and it is noted that
this is so if « >> B is interpreted to mean o 2 8B.

In this flow there certainly can be no isotropic inertial subrange,
and, in fact, neither equation (22) nor (42) 1s satisfied. The largest
value of R, attained in a well-defined turbulent flow appears to be
that in Laufer's pipe (see ref. 12), Ry, = 250. In this case,

Rk3/2 =~ 4,000, and he does find some evidence for an isotropic lnertial

subrange.

I conclusion, it seems worthwhile to set up a turbulent flow with
still higher velues of R, ‘than those attained by Laufer, perhaps greater

than or equal to 500. Since R; increases more slowly than R (where
R = VD/v and V and D are characteristic gross veloclity and width)l

for fixed geometrical boundaries, values of 500 or higher will not be
easy to attain with air in a small laboratory. '

The Johns Hopkins Universlty,
Baltimore, Md., August 16, 1956.

1Neglect1ng the slow decrease in turbulence level which sometimes

accompanies increassing Reynolds numbers in shear flows, RA « Rl/z.
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Figure l.- Characteristic spectral times (assuming a Heisenberg
spectrum).
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